
-_ _ _ ,.:ff i'i _, '

N90:20652
TAE PLUS: Transportable Applications Environment Plus

Tools for Building Graphic-oriented Applications

Martha R. Szczur
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771
[MSZCZUR/GSFCMAIL] TELEMAIL/USA

Marti@DSTL86.span.nasa.gov
(301) 286-8609 _ 888-8609

INTRODUCTION

The Transportable Applications Environment
Plus (TAE PlusTM), developed by NASA's Goddard
Space Flight Center, is a portable User Interface
Management System (UIMS), which provides (1)
an intuitive WYSIWYG WorkBench for prototyp-
ing and designing an application's user interface,
integrated with (2) tools for efficiently implement-
ing the designed user interface and (3) effective
management of the user interface during an ap-
plication's active domain. During the develop-
ment of TAE Plus, many design and implementa-
tion decisions were based on the state-of-the-art
within graphics workstations, windowing system
and object-oriented programming languages, and
this paper shares some of the problems and issues
experienced during implementation. The paper
concludes with open issues and a description of
the next development steps planned for TAE Plus.

TAE PLUS AS A UIMS

Before presenting TAE Plus as a UIMS it is first
necessary to define what a UIMS is. The definition
by Betts et al [1] which is defined in terms of activi-
ties and purposes best describes the objectives of
TAE Plus:

"A User Interface Management System (UIMS) is
a tool (or tool set) designed to encourage interdis-
ciplinary cooperation in the rapid development,
tailoring and management (control) of the interac-
tion in an application domain across varying de-
vices, interaction techniques and user interface
styles. A UIMS tailors and manages (controls)
user interaction in an application domain to allow
for rapid and consistent development. A UIMS
can be viewed as a tool for increasing program-
mer productivity."

TAE Plus is a tool for designing, building and tai-
loring an application's user interface (UI) and for
controlling the designed UI throughout the appli-

cation's execution. The main component of TAE
Plus is a WYSIWYG user interface designers'
"WorkBench" that allows an application developer
to interactively construct the look and feel of an ap-
plication screen by arranging and manipulating
"interaction objects" (e.g., radio buttons, menus,
icons, stretchers, rotators, etc.).

Once the application's screen has been designed,
the WorkBench saves the user interface details in
a resource file. TAE Plus includes runtime ser-
vices, Window Programming Tools (WPTs),
which are used by application programs to display
and control the user interfaces designed with the
WorkBench. Since the WPTs access the resource
file during execution, the user interface details
remain independent from the application code, al-
lowing changes to be easily made to the look and
feel of an application without recompiling or re-
linking the software. To change the user inter-
face, the designer returns to the WorkBench, dy-
namically makes the modifications, and the
resource files are automatically updated. The
next time the application is run, the modifications
will be in effect. Figure 1 illustrates the TAE Plus
structure.

Jl '"
WorkBench

DIIveloper'll

IL
Graphic

wo_,,.,o_ I..1

!l. w
Graph_:

Workstation

Figure 1.TAE Plus Plus Structure

In addition to providing the WPT runtime subrou-
tines, TAE Plus also offers control of interaction
objects from the interpreted TAE Command Lan-
guage (TCL). This capability provides an extreme-
ly powerful means to quickly prototype an applica-
tion's use of TAE Plus interaction objects and add
programming logic without the requirement to
compile or link.

INTERACTION OBJECTS AS BUILDING
BLOCKS

The basic building blocks for developing an appli-
cation's user interface are a set of interaction ob-
jects. All visually distinct elements of a display
that are created and managed using TAE Plus are
considered to be interaction objects. Within TAE
Plus, interaction objects fall into three categories:
user-entry objects, information objects and data-
driven objects. User-entry objects are mecha-
nisms by which an application can acquire infor-
mation and directives from the end use, and in-
clude radio buttons, text entry fields, scrolling text
lists, pulldown menus, and push buttons. Infor-
mation objects are used by an application to in-
struct or notify the user, such as contextual on-
line help information displayed in a scrollable
static text object or brief status/error messages
displayed in a bother box. Data-driven objects are
vector-drawn graphic objects which have been
"connected" to an application data variable, and
elements of their view change as the data values
change. Examples are dials, thermometers, and
strip charts, The real-time data-driven objects
are the most recent addition to the TAE Plus inter-
action object collection and currently, the types
supported include rotators, stretchers, discretes,
text and realtime graphs. Figure 2 illustrates the
current set of TAE Plus interaction objects (which
are referred to as items in the WorkBench). For
advanced screen designs, these items can be
grouped or composed into larger interaction ob-
jects, called panels by the WorkBench.

,_ Psn*l

-- Text Display

Rml_ 8uato_
8ink

--]'Ill Flald

Plgssdll

Obj_s

Figure 2. Current set of TAE Plus interaction objects

The use of interaction objects offers the application
designer/programmer a number of benefits with
the expected payoff of an increase in programmer
productivity. [2]

• The interaction objects work together both visu-
ally and behaviorally to provide a consistent look
and feel for the application's user interface. This
consistency translates into reduced end-user
training time, more attractive (from a graphic de-
sign point of view) screens, and an application
which is easier to use.

* Interaction objects provide a common frame-
work for diverse sets of application programs, and
serve as a base set of well-documented standards
for user interfaces in systems composed of many
separate application programs.

• The set of user entry interaction objects covers
most common data entry and manipulation
needs, allowing the application programmer to
spend more time on the content of the application
program. The data driven interaction objects pro-
vide a standard means of displaying realtime data
graphically. The object architecture also enables
quick development and addition of new interaction
objects into the TAE Plus object library.

* The interaction objects have been thoroughly
tested and debugged, allowing the programmer to
spend more time testing the application, and less
time verifying that the user interface behaves cor-
rectly. This is particularly important considering
the complexity of some of the objects, and the pro-
gramming effort it would take to code them
scratch.

WORKBENCH SCENARIO

The WorkBench provides an intuitive environ-
ment for defining, testing, and communicating
the look and feel of an application system. As a de-
signer tool, it provides the following key features:

* Customization and direct manipulation of
user interaction objects

• Application code generater
• Capability to dynamically define

"connections" between interaction objects
• Rehearsal capability to "try out" sequencing

of the user interface design
• Icon editor and support for raster objects
• Undo capability
• Help icon/button on-line support
• Capability to dynamically draw and define

data-driven graphic objects

Let's walk through a simple design scenario to get
a feel for how the WorkBench operates. The appli-
cation is a hardware monitoring task for a satel-
lite data handling facility and the designer is go-
ing to layout the user interaction in which the

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3. Hand-drawn sketch of application's
user interface to be created with WorkBench

Resource File: Hide [_'h

Grid _i'g
WorkBench Huge:

Undo i'u

• Hoye/Resize/[dJt Nev Ptnel _i'P
0 Set Defeult Ye]ues
0 Connections NzV Item _'i

Current Selection:

.... WorkBerch Command Menus

P,me] Name (1-10 chars) : [moBitor

Tffle: I Honttor

Help File : [] Edit

[BHELPLIB/m_Mtor I

BorderSize 'inPixeb :

C,r_dSize inPixeb:

Background Color F_e_o_ Color Fe_t

o_ j .,PLy/ ,'LOS[

Figure 4. WorkBench's Main Menu
and Panel Specification Panel

Item Name (1-8 chars): _ INTIERNAL DATA TYPE

• Sir t_J
Panel Name : _ O Intqer

OReal ConslraiRts

Title: I

ISNun VikJe kl_wed?

Hinimum Vector Co_t _ O q_s _ no

Maximum Vector Count _ Ger_rates Events?Haxm,,JmStringSize • 9es 0 no

Presentation T(JpeO button O icorl O pJK_'_,dff 0 pulldewn • rsdie

O steY, c O text O tex_di_p O text]L_t O vm'tsp,v,._ Ptqatls

B_ckground Colwr Fm'e_'ound Co]_ Funt

Figure 5. Defining the interaction
objects to reside in a panel.

operator is prompted for a hardware channel
number. Once the operator selects a channel, a
new panel appears with a realtime sliding bar ob-
ject displaying the amount of data flowing
through the channel. Figure 3 shows a rough
sketch of the two panels which are to be designed
with the WorkBench in this scenario.

Functionally, the WorkBench allows an applica-
tion designer to dynamically lay out an application
screen, defining its static and dynamic areas.
The tool provides the designer with a choice of pre-
designed interaction objects and allows for tailor-
ing, combining and rearranging of the objects. To
begin the session, the designer needs to create the
base window into which interaction objects will be
specified. He/she selects New Panel from the
main WorkBench menu, which displays the panel
specification panel (Refer to Figure 4) where the
designer specifies presentation information, such
as the title, scroll option, font, color, and optional
on-line help for the panel Monitor.

The designer is now ready to define the interaction
items to reside in the panel. He/she selects New
Item from the WorkBench main menu and is pre-
sented with the item specification window. The de-
signer defines both the presentation information
and the context information. The item specifica-
tion window has an associated Constraints (i.e.,
context) window within which the labels for each
entry of a radio button bank object are specified
(refer to Figure 5). For the scenario we are follow-
ing here, the designer has created a radio button
bank for the channel numbers, a cancel and okay
button and a panel help icon. For icon support,
the WorkBench has an Icon Editor, within which
an icon can be drawn, edited and saved.

The designer also has the option of retrieving a
"palette" of items (by selecting File....Include from
the WorkBench menu). From this collection of
previously created items, the designer can select
and copy appropriate objects. The ability to reuse
items saves programming time, facilitates trying
out different combinations of items in the prototyp-
ing process, and contributes to standardization of
the application's "look and feel". If an application
system manager wanted to ensure consistency
and uniformity across an entire application's UI,
all developers could be informed to use only items
from the application's palette of common items.

The designer goes through the same process to
build the realtime display panel, DataFlow. This
simple panel is made up of a data-driven stretcher
item, selected from a pre-defined pallete of"output
objects", and a quit button. The WorkBench pro-
vides a drawing tool [5] within which the static
background and dynamic foreground of a data-
driven object can be drawn, edited and saved.
Once the object is created, the designer identifies
presentation attributes for the object (i.e. the color

Oi-" pC '_.........._ O,!.;AL.iTY

thresholds, maximum/minimum, delta).

Most often an application's UI will be made up of
a number of related panels, sequenced in a mean-
ingful fashion. Through the WorkBench, the de-
signer defines the interface "connections". These
links determine what happens when the user se-
lects a button or a menu entry. The designer atta-
ches "events" to interaction items and thereby des-
ignates what panel appears and what program
executes when an event is triggered. Events are
triggered by user-controlled I/O peripherals (e.g.,
point and click devices or keyboard input). In Fig-
ure 6, the designer has specified links causing the
Dataflow panel to appear when the end user se-
lects the option marked Channel 1 and the process
Flowcompute to be executed. In turn, Flowcom-
pute is the application process containing the
data variable that drives the variations in appear-
ance of the item BarSlide.

TAE Plus also offers an optional help feature
which provides a consistent mechanism for sup-
plying application specific information about a
panel and any interaction items within the panel.
In a typical session, the designer elects to edit a
help file after all the panel items have been de-
signed. Clicking on the edit help option brings up
a text editor window in which the appropriate in-
formation can be entered. The designer can then
define any button item or icon item to be " the"
help item for the panel (in the scenario we are fol-
lowing, it would be the Help icon in the panel
Monitor). During the application operation, when
the end-user clicks on the question mark item,
the cursor changes to a "?". The end-user then
clicks on the panel itself or any item in the panel
to bring up a help panel containing the associated
help text.

designer must then be able to preview (i.e., to re-
hearse) the interface's operation. With this poten-
tial to "test drive" an interface, to make changes,
and to dry-run again, iterative design becomes
part of the prototyping process. When the design-
er selects the rehearse option (by selecting Utili-
ty....Rehearse from the WorkBench Menu), the
screen is cleared and the WorkBench goes
through the entire sequence as if the application
were executing. With the rehearsal feature, the
designer can evaluate and refine both the func-
tionality and the aesthetics of a proposed interface.
After the rehearsal, control is returned to
wherever the designer left off in the WorkBench
and he/she can either continue with the design
process or save the defined UI in a resource file
(by selecting File....Save from the WorkBench
Menu).

Developing software with sophisticated user inter-
faces is a complex process, mandating the support
of varied talents, including human factors experts
and application program specialists. Once the UI
designer (who may have limited experience with
actual code development) has finished the UI, he/
she can turn the saved UI resource file over to an
experienced programmer. As a further aid to the
application programmer, the WorkBench's
"generate" feature (Utility....Generate) produces a
fully annotated and operational body of code
which will display and manage the entire Work-
Bench designed UI. Currently, source code gen-
eration of C, Ada and TCL are supported, with
bindings for Fortran and C++ expected in later
TAE Plus releases. The programmer can now add
additional code to this template and make a fully
functional application. Providing these code
"stubs" helps in establishing uniform program-
ming method and style across large applications
or a family of interrelated software applications.

Figure 6.
Using the WorkBench to define "connections".

Having designed the layout of panels and their at-
tendant items and having threaded the panel and
items according to their interaction scenario, the

WINDOW PROGRAMMING TOOLS (WPTs)

The Window Programming Tools (WFrs) are a
package of application program callable subrou-
tines used to control an application's user inter-
face. Using these routines, applications can de-
fine, display, receive information from, update
and/or delete TAE Plus panels and interaction ob-
jects (refer to Figure 7 for a current list of WPT).
WPTs support a modeless user interface, mean-
ing a user can interact with one of a number of in-
teraction objects within any one of a number of
displayed panels. In contrast to sequential mode-
oriented programming, modeless programming
accepts, at any instance, a number of user inputs,
orevents. Because these multiple events must be
handled by the application program, event-driven
programming can be more complex than tradi-
tional programming. TheWorkBench's auto-
generation of the WPT event loop reduces the risk
of programmer error within the UI portion of an
applications' implementation.

OF POOR QI,.I._LITY

Display Busy Indicator
Close Item,s on a Panel

Get the X Window Id of a Names Window

Stop Displaying Busy Indicator
Initialize the Window Systeca
Get Wlndowld of Window for an It_

Determine ff Mlsslnq Parameter Values

Display an Interactlon Panel
Get Next Panel-Related Event from WYT

Erase a panel _rom the screen

Reset Panel to Inltlal Values

Display a Messaqe for a WP? Panel
Get an X window Id

Get the Xr Defined Panel Handle of a W?T Panel

Reject the Current Value of a Parat_eter

Update a Parameter on a Dlsplayed Panel
Update the vlew of a Parameter on a Displayed Panel

Figure 7. The Window Programming Tools (WPTs)

The WPTs utilize the X Window System TM [10] as
its base windowing system. One of the strengths of
X is the concept of providing a low-level abstrac-
tion of windowing support (Xlib), which becomes
the base standard, and a high-level abstraction (X
toolkits), which has a set of interaction objects
(called "widgets" in the X world) that define ele-
ments of a urs look and feel. The current version
of TAE Plus (V3.2) is implemented with the latest
release of X (Xll.3) using the Xray toolkit, which
was distributed with earlier versions of X. We are

rewriting our WPTs to utilize the X Toolkit, which
is becoming a de facto toolkit standard. The initial
approach is to base our default set of interaction
objects on the HP widget set delivered with the ge-
neric M.I.T. delivery of X (and which is in the
public domain) while supporting an open archi-
tecture that allows adding to the widget set. A
"cookbook" explaining the steps to be taken to re-
place/add widgets and update the WorkBench is in
progress. This will enable TAE Plus to be used for
designing and managing the user interface that
adheres to whatever UI style is defined by an ap-
plication group to be their preferred widget set.

The WPTs also provide a buffer between the appli-
cation program and the X Window System servic-
es. For instance, to display a WorkBench-
designed panel, an application makes a single call
to Wpt_NextPanel. This single call translates into
a function that consists of about 2800 lines of C
code and makes about 50 calls to X Window Sys-
tem routines. For the majority of applications, the
WPT services and objects supported by the Work-
Bench provide the necessary user interface tools
and save the programmer from having to learn
the complexities of programming directly with X.
This can be a significant advantage, especially
when considering that the full set of 17 Wpt rou-
tines consist of 5800 lines of C code and make a to-
tal of between 300-400 X calls.

PROTOTYPING IN TAE COMMAND
LANGUAGE (TCL)

To provide an easy method for displaying and ma-
nipulating the newly designed user interface, we
created a simple set of commands CWPT" com-
mands) within the TAE Command Language
(TCL).

TCL offers a high-level set of commands used to
invoke and manage application functions. Com-
mands can be invoked dynamically during an in-
teractive session or used to build command proce-

dures.An advantage TAE Plus has over some
other UIMS is that it does not just support the
user interface component of an application, but
has a full set of integrated tools to fully support an
application, either a prototype or an operational
version. These services include parameter manip-
ulation, message logging, logon/logoff procedure,
data file I/O, operating system services, scripting
capability, session logging, procedure building
capability, on-line help, and user-site tailoring of
TAE Plus commands. Because user interface tools
are integrated _vith general purpose application
management services, the application need not be
tightly tied to a particular operating system or
computer.

Since TCL is an interpreted language, the com-
mands can be used to prototype an application
without having to recompile or relink every time a
change is made. Just as with WPT routines used
by application programs, the WPT commands can
be used to directly define panels and items, or they
can be used to access WorkBench-generated re-
source files that contain pre-defined panels and
items. While the intended use of these commands
is for prototyping, if the overhead performance of
executing TCL commands is acceptable, then
command procedures using WPT commands
would be appropriate for operational systems.

TALEPLUS ARCHYrECTURE

The TAE Plus architecture is based on a total sep-
aration of the user interaction management from
the application-specific software. The current im-
plementation is a result of having gone through
several prototyped versions of a WorkBench and
graphic support development during the 1986-87
period, as well as building on an exisiting appli-
cation management system, the original TAE (af-
fectionately referred to as "TAE Classic"). [9] TAE
Classic architecture, which was designed in 1980,
was based on a total separation of the user interac-
tion in a much stricter sense than the TAE Plus
implementation. All user dialogue was directed
through a terminal monitor, including dialogues
initiated from within an application. This central
control of the UI easily facilitated the goal of pro-
viding a consistent look and feel across an applica-

tion,butwaslimitedtoanASCIIterminal.

Theadventof the graphic workstation inspires
more elaborate user interfaces and a closer inter-
relationship between the application program and
the UI. The TAE architecture was enhanced to al-
low for an application to directly control the user
interactions, while still maintaining presentation
independence (i.e., an application doesn't need to
know any of the details as to how a request for data
is actually being presented to the user, only what
the data is). Figure 8 illustrates how the TAE Plus
structure maintains UI/application independence
while providing run-time services to control and
manipulate the user interactions from within an
application.

TAlE
|ntorrlce OOqllgnlr

WorkBon¢h

Figure 8.
TAE Plus architecture maintains separation

of UI and application elements

SELECTION OF AN IMPLEMENTATION
LANGUAGE

TAE Classic is implemented in the C program-
ming language, which has proven to be an effi-
cient and standard language across different
hardware platforms, thus allowing for the porting
of TAE source code with reasonable ease. Howev-
er, we felt a "true" object-oriented language
would provide us with the optimum environment
for implementing the TAE Plus graphical user in-
terface capabilities. (See Chapter 9 of Cox [3] for a
discussion on the suitability of object-oriented lan-
guages for graphical user interfaces.)

In early 1987, before committing to an object-
oriented language and as a means of demonstrat-
ing the utility of the X Window System in our
UIMS concept, we built a rapid prototype of TAE
Plus, using Smalltalk TM to implement the Work-
Bench. This proved to be a beneficial learning ex-
perience. The prototype demonstrated that object-
oriented programming is a productive and effec-
tive method for building user interfaces. Al-
though Smalltalk enabled us to generate a proto-
type in a timely manner, several concerns did
surface during the implementation. For instance,

at the time of the prototyping effort, Smalltalk was
not based on the X Window System, which meant
the WorkBench and the WPTs had different imple-
mentations of the interaction object functions.
Another concern with the Smalltalk implementa-
tion was that the designer had to have some un-
derstanding of Smalltalk's interface conventions --
not a desirable feature since the user interface for
applications operating in the TAE Plus environ-
ment would have a different set of conventions im-
posed by an X-based Window Manager. The issue
of distribution of TAE Plus with a SmaUtalk appli-
cation was also a problem. With TAE, distribution
only involves acquiring a license from COSMIC TM

(NASA's distribution center), but for a site to run
the WorkBench, they would also need a Smalltalk
license. The limited use of Smalltalk in our user
community made this undesirable. For these and
other reasons [15] we looked at other languages
for the operational implementation of the Work-
Bench.

Though the X Window System is written in C, we
did not want to constrain ourselves to a procedure-
based language, especially in light of the power of
C++ and Objective C, and the fact that interfaces
from these object-based languages exist to the X
runtime library. For the past several years, we
have closely followed the C++ versus Objective C
debate. The Objective C argument is strong -- the
language is a marriage of two powerful languages
(Smalltalk and C), and provides much of the
Smalltalk elegance without severe performance
penalties. We selected C++, however, for several
reasons [15]. For one, C++ seems to be a
"cleaner" language (i.e., it is a conceptually
strong expansion of C) and is becoming increas-
ing popular within the object -oriented program-
ming community. Another strong argument for
using C++ is the growing availability of existing
public domain X-based object class libraries. Uti-
lizing an existing object library is not only a cost
saver, but also serves as a learning tool, both for
object-oriented programming and for C++. Deliv-
ered with the X Window System is the InterViews
C++ class library and a drawing utility, idraw,
both of which were developed at Stanford Universi-
ty. [4,5] The InterViews C++ class library has
many attractivefeatures.The classstructurehas
gone through severalmajor iterationsand the
currentdesign isclean. The idraw utilityisa so-

phisticateddirectmanipulation C++ application,
which allowsthe WorkBench tocreate,editand

save the graphical data-driven interaction objects.

Many of the current implementations of C++ com-
pilers are pre-processors generating standard C
code, thus enabling the operational TAE Plus code
to be delivered in C code and allowing for ease in
porting. With this option and by utilizing sophisti-
cated public domain software packages (X Win-
dow System, InterViews, and idraw) we avoid re-
quiring our user community to purchase any
additional software licenses or compilers.

ORIGINAL PAGE I$

OF POOR QUALITY

Because of NASA's commitment to use Ada TM for
all Space Station software development, the ques-
tion arises "why not Ada"? We do not consider
Ada a purely object-oriented language. [3,11,12,17]
As mentioned earlier, we felt that the TAE Plus
development would be better served by a "pure" ob-
ject-oriented language -- one that supports data
encapsulation, inheritance and polymorphism.
These are the features associated with the type of
object-oriented programming supported by Small-
talk and C++. Since TAE Plus software services
can be accessed by Ada applications, we feel that
implementing the TAE Plus environment in a
pure object-oriented language is the most effective
approach at this particular time.

PORTABILITY and MAINTAINABILITY

TAE is designed to be portable. At present, TAE
Classic is successfully operating on 14 Unix-based
computers, VAX/VMS and the IBM/VM environ-
ment. TAE Plus base development is being done
on a Sun workstation under Unix. As of February
1989, it is also operational under Unix on the Apol-
lo, VaxStation II (Ultrix), HP9000, Masscomp and
the Macintosh II (A/UX). Ports are in progress
for the IBM RT and IBM PS/2 under AIX and the
VAX under VMS. TAE Classic has over 230 in-
stallations, of which 64 are NASA. The current
beta version of TAE Plus is located at over 100
world-wide beta sites, including at least 30 NASA
installations.

Every system is maintainable; how easy it is to
maintain is the issue. When a UIMS is used as a
tool to build and support an application's user in-
terface, there is a legitimate concern about the ap-
plication's dependency on a "black box". (Since an
application program's UI control is isolated in the
UIMS, it is frequently perceived by application
programmers as a "black box".[6]) The UIMS ar-
chitecture assure developers that corrections and
upgrades to itself will have a minimal impact
within the application domain. We knew when we
began that TAE Plus was targeted for wide appli-
cation utilization and for different machines, so
ease of maintenance has always been important.
By providing the application callable WI=Ws and
WPT function commands, applications are isolat-
ed from the windowing system, and thus, if in a
few years a newer, faster, fancier windowing
standard shows up, only the WPTs require updat-
ing or rewriting; the application code is not affect-
ed. In effect, this is what we're doing with the re-
write of the WPTs to use the Xll Xtoolkit
intrinsics. All applications, as well as the Work-
Bench, will get enhanced capability and perfor-
mance without making any changes to them-
selves.

User support is another facet of maintainability.
Since the first release of TAE Classic in 1981,

we have provided user support through a fully
staffed Support Office. This service has been one
of the primary reasons for the success of TAE.
Through the Support Office, users receive an-
swers to technical questions, report problems, and
make suggestions for improvements. In turn, the
Support Office keeps users up-to-date on new re-
leases, provides training sessions, and sponsors
user workshops and conferences. This exchange
of information enables the Project Office to keep
the TAE software and documentation "in working
order" and, perhaps most importantly, take ad-
vantage of user feedback to help direct our future
development.

NEXT_

The current TAE Plus provides a powerful and
much needed tool for the continuum of software
engineering -- from the initial design phases of a
highly interactive prototype to the fully operational
application package. However, there is still a long
list of enhancements and new capabilities that we
will be adding to TAE Plus in future releases.
Features included on the "Wanted List" are exten-
sions to the interaction objects, particularly in the
data-driven object category; integration with the
Open Software Foundation's (OSF) User Environ-
ment Component (UEC); direct manipulation sup-
port for application programs; ports to new work-
station platforms; on-line tutorial and training
tools; introduction of hypermedia technology; inte-
gration of expert system technology to aid in mak-
ing user interface design decision; and imple-
mentation of additional user interface designer

tools, such as a WYSIWYG graph builder.

CONCLUSION

Building large scale interactive systems has been
a regular activity at NASA/Goddard Space Flight
Center (GSFC) since the transition from card
readers to interactive terminals. Although the ap-
plications vary from on-board flight instrument
command and control to scientific data analysis,
they have all required software to support the com-
munication between the human user and the ap-
plication tasks. In the early 1980's, GSFC sought
to capitalize on common requirements in human-
computer interaction by building TAE Plus Clas-
sic, a powerful tool for quickly and easily building
consistent, portable user interfaces in an interac-
tive alphanumeric terminal environment. With
the emergence of sophisticated graphic worksta-
tions and the subsequent demands for highly in-
teractive systems, the user interface becomes
more complex and includes multiple window dis-
plays, the use of color, graphical objects and icons,
and various selection techniques. Traditional UI
paradigms give us only improvished models and

guidelines;theyareinadequatefor what can be
accomplished with the new technology. Prototyp-
ing of different user interface designs, thus, be-
comes an increasingly important method for sta-
bilizing concepts and requirements for an
application. At GSFC, we had the requirement to
provide a tool for prototyping a visual representa-
tion of a user interface, as well as establish an in-
tegrated development environment that allows
prototyped user interfaces to evolve into operation-
al applications. We feel TAE Plus is fulfilling this
role by providing a usable, generalized, portable
and maintainable package of development tools.
TAE Plus is an evolving system and its develop-
ment will continue to be guided by user-defined re-
quirements. To date, each phase of TAE Plus's ev-
olution has taken into account advances in virtual

operating systems, human factors research, com-
mand language design, standardization efforts
and software portability. With TAE Plus's flexibil-
ity and functionality, we believe it can contribute to
both more advances and more standardization in
user interface management system technology.

ACKNOWLEDGEMENTS

TAE Plus is a NASA software product being devel-
oped by the NASA/Goddard Space Flight Center
and by Century Computing, Inc. The work is
sponsored by the NASA Office of Space Science
and Applications and the Office of Space Opera-
tions. Special thanks to Dr. Patricia Carlson for
her quality editing and to the TAE Plus Support
Office staff for their tireless service to the TAE
Project.

TAE is a registered trademark of National Aero-
nautics and Space Administration (NASA). It is
distributed through NASA's distribution center,
COSMIC. For further information, contact the
TAE Support Office at GSFC, (301) 286-6034.

REFERENCES

1. Betts, B., Burlingame, D., Fischer, G., Foley, J.,
Green, M., Kasik, D., Kerr, S., Olsen, D., Thom-
as, J., "Goals and Objectives for User Interface
Software", COMPUTER GRAPHICS, 21:2, 1987.

2 .Bleser, Teresa, "TAE Plus Style Guide",
NASA Contractor Document, February 1989.

3. Cox, Brad J., OBJECT ORIENTED PROGRAM-
MING, AN EVOLUTIONARY APPROACH, Ad-
dison-Wesley Publishing Company, Reading,
Massachusetts, 1986.

4. Linton, Mark, Calder, Paul R., "The Design
and Implementation of InterViews", Proceedings
of the C++ Workshop, USENIX, November, 1987,
pp.256-273.

5. Linton, Mark A., Vlissides, John M., Calder,
Paul R., "Composing User Interfaces with Inter-
views", IEEE COMPUTER, February, 1989

6. Lowgren, Jonas, "History, State and Future of
User Interface Management Systems", SIGCHI
BULLETIN, 20:2, 1988.

7. Myers, B., "Gaining General Acceptance for
UIMS", COMPUTER GRAPHICS 21:2, 1987.

8. Olsen, D., " Larger Issues in User Interface
Man agement",COMPUTER GRAPHICS 21:2,
1987.

9. Perkins, D.C., Howell, D.R., Szczur, M.R., "The
Transportable Applications Executive -- an inter-
active design-to-production development system",
DIGITAL IMAGE PROCESSING IN REMOTE
SENSING, edited by J-P Muller, Taylor & Francis
Publishers, London, 1988.

10. Scheifler, Robert W., Gettys, Jim., "The X Win-
dow System", MIT Laboratory for Computer
Science, Cambridge, MA., October 1986

11. Schmucker, Kurt J., OBJECT-ORIENTED
PROGRAMMING FOR THE MACINTOSH, Hay-
den Book Company, Hasbrouck Heights, New Jer-
sey 1986.

12. Seidewitz, Ed.,"Object-Oriented Programming
in Smalltalk and Ada", Proceedings of the Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA) Conference, October,
1987.

13. Space Station Program Office, "Space Station
Information System User Support Environment
Functional Requirements", Final Draft, JSC
30497, April, 1987

14. Stroustrup, Bjarne, THE C++ PROGRAM-
MING LANGUAGE, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1987.

15. Szczur, Martha R., Miller, Philip,
"Transportable Applications Environment (TAE)
Plus: Experiences in "Object"ively Modernizing a
User Interface Environment", Proceedings of the
Object-Oriented Programming Systems, Languag-
es and Applications (OOPSLA) Conference, Sep-
tember 1988

16. TAE Plus V3.2 Documentation Set, Century
Computing, Inc., NASA Contractor Documenta-
tion, January 1989

17. Wegner, Peter, "Dimensions of Object-Based
Language Design", Proceedings of the Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA) Conference, October,
1987.

